

# Proportional Rates Models for Multivariate Panel Count Data

Yangjianchen Xu

Department of Biostatistics The University of North Carolina at Chapel Hill

August 8, 2023

# Acknowledgements





Dr. Donglin Zeng



Dr. Danyu Lin











#### A skin cancer trial









Simulation studies

#### 🕘 A skin cancer trial

Proportional Rates Models for Multivariate Panel Count Data

# THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

### Introduction

#### **Multivariate Panel Count Data**

- recurrent events examined periodically (interval censoring)
- multiple types of events (not competing risk)

#### THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

### Introduction

#### Multivariate Panel Count Data

- recurrent events examined periodically (interval censoring)
- multiple types of events (not competing risk)

#### Examples

- the number of clinically and radiologically damaged joints in a psoriatic arthritis patient (Gladman et al., 1995)
- the number of basal and squamous cell tumors in a skin cancer patient (Bailey et al., 2010)

#### THE UNIVERSITY of NORTH CAROLIN of CHAPEL HILL

### Introduction

#### Multivariate Panel Count Data

- recurrent events examined periodically (interval censoring)
- multiple types of events (not competing risk)

#### Examples

- the number of clinically and radiologically damaged joints in a psoriatic arthritis patient (Gladman et al., 1995)
- the number of basal and squamous cell tumors in a skin cancer patient (Bailey et al., 2010)

#### **Theoretical/Computational Issues**

- no exact failure time
- complex dependence for the recurrent events of the same type and of different types

# Existing methods



#### **Random-effects models**

• Zeng and Lin (2020) and the references therein

# Existing methods



#### **Random-effects models**

• Zeng and Lin (2020) and the references therein

#### Marginal models: proportional rates/means models

- Sun and Wei (2000), He et al. (2007): independent or modeled examination times
- Wellner and Zhang (2007): slow and unstable doubly iterative algorithm
- Lu et al. (2009): arbitrary choices of spline functions



• a simple and stable EM-type algorithm is used for estimation



- a simple and stable EM-type algorithm is used for estimation
- examination times are not modeled



- a simple and stable EM-type algorithm is used for estimation
- examination times are not modeled
- cumulative baseline rate functions are estimated nonparametrically



- a simple and stable EM-type algorithm is used for estimation
- examination times are not modeled
- cumulative baseline rate functions are estimated nonparametrically
- asymptotic theory is established



- a simple and stable EM-type algorithm is used for estimation
- examination times are not modeled
- cumulative baseline rate functions are estimated nonparametrically
- asymptotic theory is established
- graphical and numerical model checking techniques are first proposed

Outline





#### 2 Methods and Theory

Simulation studies

#### A skin cancer trial

Proportional Rates Models for Multivariate Panel Count Data

### Notation



- *n* = number of subjects
- K = number of types of events
- $X_i(\cdot) =$  (potentially time-dependent) covariates
- $N_{ki}(\cdot) = \text{counting process of the } k\text{th type of event for the } i\text{th subject}$
- $0 < U_{ki1} < \cdots < U_{ki,m_{ki}} = C_{ki}$  are examination times for  $N_{ki}(\cdot)$

• 
$$\Delta_{kij} = N_{ki}(U_{kij}) - N_{ki}(U_{ki,j-1}) \ (j = 1, \dots, m_{ki})$$

#### THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

### Models

#### **Proportional Rates Models**

$$E\{\mathrm{d}N_{ki}(t)\mid X_i(t)\}=\exp\{\beta_k^{\mathrm{T}}X_i(t)\}\mathrm{d}\Lambda_k(t)$$

• 
$$\mathrm{d}N_{ki}(t) = N_{ki}\{(t+\mathrm{d}t)-\} - N_{ki}(t-)$$

- $\beta_k = \text{regression parameters}$
- $\Lambda_k(t)$  = arbitrary non-decreasing baseline cumulative rate function

# THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

### Models

#### **Proportional Rates Models**

$$E\{\mathrm{d}N_{ki}(t) \mid X_i(t)\} = \exp\{\beta_k^{\mathrm{T}}X_i(t)\}\mathrm{d}\Lambda_k(t)$$

• 
$$\mathrm{d}N_{ki}(t) = N_{ki}\{(t+\mathrm{d}t)-\} - N_{ki}(t-)$$

- $\beta_k = \text{regression parameters}$
- $\Lambda_k(t)$  = arbitrary non-decreasing baseline cumulative rate function

#### Working Assumptions

- all types of event times are independent
- $N_{ki}(t)$  is a nonhomogeneous Poisson process
  - $\Delta_{kij}$  are independent Poisson with means  $\int_{U_{kij}=1}^{U_{kij}} \exp \left\{ \beta_k^{\mathrm{T}} X_i(u) \right\} \mathrm{d} \Lambda_k(u)$



### Estimation procedure

#### Pseudo-Likelihood

$$\prod_{i=1}^{n} \left( \prod_{j=1}^{m_{ki}} \frac{\left[ \int_{U_{ki,j-1}}^{U_{kij}} \exp\{\beta_k^{\mathrm{T}} X_i(t)\} \mathrm{d}\Lambda_k(t) \right]^{\Delta_{kij}}}{\Delta_{kij}!} \right) \exp\left[ -\int_0^{C_{ki}} \exp\{\beta_k^{\mathrm{T}} X_i(t)\} \mathrm{d}\Lambda_k(t) \right]$$



### Estimation procedure

#### Pseudo-Likelihood

$$\prod_{i=1}^{n} \left( \prod_{j=1}^{m_{ki}} \frac{\left[ \int_{U_{ki,j-1}}^{U_{kij}} \exp\{\beta_k^{\mathrm{T}} X_i(t)\} \mathrm{d}\Lambda_k(t) \right]^{\Delta_{kij}}}{\Delta_{kij}!} \right) \exp\left[ -\int_0^{C_{ki}} \exp\{\beta_k^{\mathrm{T}} X_i(t)\} \mathrm{d}\Lambda_k(t) \right]^{\Delta_{kij}} \right]$$

#### Nonparametric Maximum Pseudo-Likelihood Estimation

- $t_{k1} < \cdots < t_{kd_k}$  = the unique values of all examination times
- $\lambda_{kl} = \text{jump size of } \Lambda_k(\cdot) \text{ at } t_{kl}$
- For each k, we maximize

$$\prod_{i=1}^{n} \left[ \prod_{j=1}^{m_{ki}} \frac{\left\{ \sum_{l:t_{kl} \in (U_{ki,j-1}, U_{kij}]} \lambda_{kl} \exp(\beta_k^{\mathrm{T}} X_{kil}) \right\}^{\Delta_{kij}}}{\Delta_{kij}!} \right] \exp\left\{ -\sum_{l:t_{kl} \leqslant C_{ki}} \lambda_{kl} \exp(\beta_k^{\mathrm{T}} X_{kil}) \right\},$$

where  $X_{kil} = X_i(t_{kl})$ .

# EM-type algorithm



# **Missing data (latent variables):** $W_{kil} \stackrel{\text{ind}}{\sim} \text{Poisson} \left( \lambda_{kl} e^{\beta_k^{\mathrm{T}} X_{kil}} \right)$

# EM-type algorithm



Missing data (latent variables):  $W_{kil} \stackrel{\text{ind}}{\sim} \text{Poisson} \left( \lambda_{kl} e^{\beta_k^T X_{kil}} \right)$ Observed data:  $\{X_i(\cdot), \sum_{l:t_{kl} \in (U_{ki,j-1}, U_{kij}]} W_{kil} = \Delta_{kij}\}$ 

# THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

# EM-type algorithm

Missing data (latent variables):  $W_{kil} \stackrel{\text{ind}}{\sim} \text{Poisson} \left( \lambda_{kl} e^{\beta_k^T X_{kil}} \right)$ Observed data:  $\{X_i(\cdot), \sum_{l:t_{kl} \in (U_{ki,j-1}, U_{kij}]} W_{kil} = \Delta_{kij}\}$ Observed-data likelihood

$$\prod_{i=1}^{n} \prod_{j=1}^{m_{ki}} \Pr\left(\sum_{l:t_{kl} \in (U_{ki,j-1}, U_{kij}]} W_{kil} = \Delta_{kij}\right) = \mathsf{Pseudo-Likelihood}$$

# THE UNIVERSITY of NORTH CAROLIN. at CHAPEL HILL

# EM-type algorithm

Missing data (latent variables):  $W_{kil} \stackrel{\text{ind}}{\sim} \text{Poisson} \left( \lambda_{kl} e^{\beta_k^T X_{kil}} \right)$ Observed data:  $\{X_i(\cdot), \sum_{l:t_{kl} \in (U_{ki,j-1}, U_{kij}]} W_{kil} = \Delta_{kij}\}$ Observed-data likelihood

$$\prod_{i=1}^{n} \prod_{j=1}^{m_{ki}} \Pr\left(\sum_{l:t_{kl} \in (U_{ki,j-1}, U_{kij}]} W_{kil} = \Delta_{kij}\right) = \textbf{Pseudo-Likelihood}$$

#### Complete-data log-likelihood

$$\sum_{i=1}^{n} \sum_{l=1}^{d_k} I(t_{kl} \leqslant C_{ki}) \left\{ W_{kil}(\log \lambda_{kl} + \beta_k^{\mathrm{T}} X_{kil}) - \lambda_{kl} \exp(\beta_k^{\mathrm{T}} X_{kil}) - \log W_{kil}! \right\}$$

# EM-type algorithm



E-step

$$\widehat{E}(W_{kil}) = I(U_{ki,j-1} < t_{kl} \leqslant U_{kij}) \frac{\Delta_{kij}\lambda_{kl} \exp(\beta_k^{\mathrm{T}} X_{kil})}{\sum_{s:t_{ks} \in (U_{ki,j-1}, U_{kij}]} \lambda_{ks} \exp(\beta_k^{\mathrm{T}} X_{kis})}$$

#### THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

# EM-type algorithm

E-step

$$\widehat{E}(W_{kil}) = I(U_{ki,j-1} < t_{kl} \leqslant U_{kij}) \frac{\Delta_{kij}\lambda_{kl}\exp(\beta_k^{\mathrm{T}}X_{kil})}{\sum_{s:t_{ks}\in(U_{ki,j-1},U_{kij}]}\lambda_{ks}\exp(\beta_k^{\mathrm{T}}X_{kis})}$$

M-step

$$\sum_{i=1}^{n} \sum_{l=1}^{d_k} I(C_{ki} \ge t_{kl}) \widehat{E}(W_{kil}) \left\{ X_{kil} - \frac{\sum_{i'=1}^{n} I(C_{ki'} \ge t_{kl}) \exp(\beta_k^{\mathrm{T}} X_{ki'l}) X_{ki'l}}{\sum_{i'=1}^{n} I(C_{ki'} \ge t_{kl}) \exp(\beta_k^{\mathrm{T}} X_{ki'l})} \right\} = 0.$$

We then update

$$\lambda_{kl} = \frac{\sum_{i=1}^{n} I(C_{ki} \ge t_{kl}) \hat{E}(W_{kil})}{\sum_{i=1}^{n} I(C_{ki} \ge t_{kl}) \exp(\beta_{k}^{\mathrm{T}} X_{kil})}$$



### Asymptotic properties

Write 
$$\hat{\beta} = (\hat{\beta}_1^{\mathrm{T}}, \dots, \hat{\beta}_K^{\mathrm{T}})^{\mathrm{T}}$$
 and  $\hat{\Lambda} = (\hat{\Lambda}_1, \dots, \hat{\Lambda}_K)$ .



# Asymptotic properties

Write 
$$\hat{\beta} = (\hat{\beta}_1^{\mathrm{T}}, \dots, \hat{\beta}_K^{\mathrm{T}})^{\mathrm{T}}$$
 and  $\hat{\Lambda} = (\hat{\Lambda}_1, \dots, \hat{\Lambda}_K)$ .

#### Consistency

#### Theorem 1

Under some regularity conditions,  $\|\widehat{\beta} - \beta_0\| + \sum_{k=1}^{K} \sup_{t \in [0,\tau_k]} |\widehat{\Lambda}_k(t) - \Lambda_{0k}(t)| \to 0$  almost surely, where  $\|\cdot\|$  is the Euclidean norm.

#### Asymptotic distribution

#### Theorem 2

Under some regularity conditions,  $n^{1/2}(\hat{\beta} - \beta_0)$  converges in distribution to a zero-mean multivariate normal random vector with covariance matrix

$$\Omega = \Sigma(\beta_0, \Lambda_0)^{-1} E\{S(\beta_0, \Lambda_0)S(\beta_0, \Lambda_0)^{\mathrm{T}}\}\Sigma(\beta_0, \Lambda_0)^{-1}.$$



#### Profile pseudo-log-likelihood for $\beta_k$

$$\mathrm{pl}_{k}(\beta_{k}) = \sum_{i=1}^{n} \sum_{j=1}^{m_{ki}} \left[ \Delta_{kij} \log \left\{ \sum_{U_{ki,j-1} < t_{kl} \leqslant U_{kij}} \widetilde{\lambda}_{kl} \exp(\beta_{k}^{\mathrm{T}} X_{kil}) \right\} - \sum_{U_{ki,j-1} < t_{kl} \leqslant U_{kij}} \widetilde{\lambda}_{kl} \exp(\beta_{k}^{\mathrm{T}} X_{kil}) \right]$$

•  $\widetilde{\lambda}_{kl} \, (l=1,\ldots,d_k)$  are obtained from EM with fixed  $eta_k$ 



#### Profile pseudo-log-likelihood for $\beta_k$

$$\mathrm{pl}_{k}(\beta_{k}) = \sum_{i=1}^{n} \sum_{j=1}^{m_{ki}} \left[ \Delta_{kij} \log \left\{ \sum_{U_{ki,j-1} < t_{kl} \leqslant U_{kij}} \widetilde{\lambda}_{kl} \exp(\beta_{k}^{\mathrm{T}} X_{kil}) \right\} - \sum_{U_{ki,j-1} < t_{kl} \leqslant U_{kij}} \widetilde{\lambda}_{kl} \exp(\beta_{k}^{\mathrm{T}} X_{kil}) \right]$$

•  $\widetilde{\lambda}_{kl} \, (l=1,\ldots,d_k)$  are obtained from EM with fixed  $eta_k$ 

Covariance matrix estimator between  $\hat{\beta}_k$  and  $\hat{\beta}_l$ 

$$\widehat{V}_{kl} = \left\{ D_{h_n}^2 \mathrm{pl}_k(\widehat{\beta}_k) \right\}^{-1} \sum_{i=1}^n D_{h_n} \mathrm{pl}_{ki}(\widehat{\beta}_k) D_{h_n} \mathrm{pl}_{li}(\widehat{\beta}_l)^{\mathrm{T}} \left\{ D_{h_n}^2 \mathrm{pl}_l(\widehat{\beta}_l) \right\}^{-1}$$

•  $pl_{ki}(\beta_k) = contribution of the$ *i* $th subject to <math>pl_k(\beta_k)$ 



#### Theorem 3

Under some regularity conditions,  $\{n(\hat{V}_{kl}); 1 \leq k, l \leq K\}$  is a consistent estimator for the limiting covariance matrix  $\Omega$ .



#### Theorem 3

Under some regularity conditions,  $\{n(\hat{V}_{kl}); 1 \leq k, l \leq K\}$  is a consistent estimator for the limiting covariance matrix  $\Omega$ .

#### **Statistical Inference**

 $L\widehat{\beta} \sim N\left(L\beta, LVL'\right)$  $V = \begin{bmatrix} V_{11} & \cdots & V_{1K} \\ \vdots & \vdots & \vdots \\ V_{K1} & \cdots & V_{KK} \end{bmatrix}$ 

• linear combinations (e.g., a subset of parameters, difference of two parameters)

# Model checking procedures



#### THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

# Model checking procedures

#### **Residual process**

$$\widehat{M}_{i}(t) = N_{i}(t \wedge C_{i}) - \int_{0}^{t \wedge C_{i}} \exp(\widehat{\beta}^{\mathrm{T}}X_{i}) \mathrm{d}\widehat{\Lambda}(u)$$

#### $\bullet$ observed - predicted

# THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

# Model checking procedures

#### **Residual process**

$$\widehat{M}_{i}(t) = N_{i}(t \wedge C_{i}) - \int_{0}^{t \wedge C_{i}} \exp(\widehat{\beta}^{\mathrm{T}}X_{i}) \mathrm{d}\widehat{\Lambda}(u)$$

- $\bullet \ observed \ \ predicted$
- ${\scriptstyle \bullet} \,$  not fully observed
- $\widehat{\Lambda}$  is only  $n^{1/3}$ -consistent

# THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

# Model checking procedures

#### **Residual process**

$$\widehat{M}_{i}(t) = N_{i}(t \wedge C_{i}) - \int_{0}^{t \wedge C_{i}} \exp(\widehat{\beta}^{\mathrm{T}} X_{i}) \mathrm{d}\widehat{\Lambda}(u)$$

- $\bullet$  observed predicted
- not fully observed
- $\widehat{\Lambda}$  is only  $n^{1/3}$ -consistent

#### Counting process of the examination times

$$\widetilde{N}_i(t) = \sum_{j=1}^{m_i} I(U_{ij} \leq t)$$

- model its rate function by  $E\{\mathrm{d}\widetilde{N}_i(t) \mid X_i\} = \exp(\gamma^{\mathrm{T}}X_i)\theta(t)\mathrm{d}t$
- $n^{1/2}$ -consistent estimator  $\hat{\gamma}$  from Lin et al. (2000)



Multi-parameter process

$$W(t,x) = n^{-1/2} \sum_{i=1}^{n} \int_{0}^{t} \left\{ g(u,x,X_{i},\widehat{\beta}) - \widehat{h}(u,x) \right\} \widehat{M}_{i}(u) \mathrm{d}\widetilde{N}_{i}(u)$$



Multi-parameter process

$$W(t,x) = n^{-1/2} \sum_{i=1}^{n} \int_{0}^{t} \left\{ g(u,x,X_{i},\widehat{\beta}) - \widehat{h}(u,x) \right\} \widehat{M}_{i}(u) \mathrm{d}\widetilde{N}_{i}(u)$$

- g is chosen to check different aspects of the model
- ullet a measure of the correlation between g and  $\widehat{\mathcal{M}}_i(\cdot)$



Multi-parameter process

$$W(t,x) = n^{-1/2} \sum_{i=1}^{n} \int_{0}^{t} \left\{ g(u,x,X_{i},\widehat{\beta}) - \widehat{h}(u,x) \right\} \widehat{M}_{i}(u) \mathrm{d}\widetilde{N}_{i}(u)$$

- g is chosen to check different aspects of the model
- ullet a measure of the correlation between  $m{g}$  and  $\widehat{M}_i(\cdot)$
- $\widetilde{N}_i(\cdot)$  is introduced to guarantee that only the observed values of  $\widehat{M}_i(\cdot)$  are used
- $\hat{h} = \frac{\sum_{j=1}^{n} g(u,x,X_{j},\hat{\beta}) \exp\{(\hat{\beta}+\hat{\gamma})^{\mathrm{T}}X_{j}\}}{\sum_{j=1}^{n} \exp\{(\hat{\beta}+\hat{\gamma})^{\mathrm{T}}X_{j}\}}$  eliminates the effects of the slow convergence of  $\hat{\Lambda}$



Multi-parameter process

$$W(t,x) = n^{-1/2} \sum_{i=1}^{n} \int_{0}^{t} \left\{ g(u,x,X_{i},\widehat{\beta}) - \widehat{h}(u,x) \right\} \widehat{M}_{i}(u) \mathrm{d}\widetilde{N}_{i}(u)$$

- g is chosen to check different aspects of the model
- ullet a measure of the correlation between  $m{g}$  and  $\widehat{M}_i(\cdot)$
- $\widetilde{N}_i(\cdot)$  is introduced to guarantee that only the observed values of  $\widehat{M}_i(\cdot)$  are used
- $\hat{h} = \frac{\sum_{j=1}^{n} g(u, x, X_j, \hat{\beta}) \exp\{(\hat{\beta} + \hat{\gamma})^{\mathrm{T}} X_j\}}{\sum_{j=1}^{n} \exp\{(\hat{\beta} + \hat{\gamma})^{\mathrm{T}} X_j\}}$  eliminates the effects of the slow convergence of  $\hat{\Lambda}$

Zero-mean Gaussian process

$$\widetilde{W}(t,x) = n^{-1/2} \sum_{i=1}^{n} A_i(t,x,\widehat{\Lambda},\widehat{\beta},\widehat{\gamma}) G_i,$$

where  $G_i$  are independent standard normal random variables.



Choices of  $g(u, x, X_i, \hat{\beta})$ 

- functional form:  $I(X_{iq} \leq x)$
- proportional means assumption:  $X_{iq}$
- exponential link function:  $I(\widehat{eta}^{\mathrm{T}} X_i \leqslant x)$
- overall fit:  $I(X_i \leq x)$



Choices of  $g(u, x, X_i, \hat{\beta})$ 

- functional form:  $I(X_{iq} \leq x)$
- proportional means assumption:  $X_{iq}$
- exponential link function:  $I(\hat{\beta}^{\mathrm{T}}X_i \leq x)$
- overall fit:  $I(X_i \leq x)$

#### **Graphical inspection**

- $\bullet$  plot  $W(\infty,x)$  and a few realizations from  $\widetilde{W}(\infty,x)$  against x
- $\bullet$  plot  $\mathcal{W}(t,\cdot)$  and a few realizations from  $\widetilde{\mathcal{W}}(t,\cdot)$  against t



Choices of  $g(u, x, X_i, \hat{\beta})$ 

- functional form:  $I(X_{iq} \leq x)$
- proportional means assumption:  $X_{iq}$
- exponential link function:  $I(\hat{\beta}^{\mathrm{T}}X_i \leq x)$
- overall fit:  $I(X_i \leq x)$

#### **Graphical inspection**

- plot  $W(\infty,x)$  and a few realizations from  $\widetilde{W}(\infty,x)$  against x
- $\bullet$  plot  $\mathcal{W}(t,\cdot)$  and a few realizations from  $\widetilde{\mathcal{W}}(t,\cdot)$  against t

#### Supremum test

- generate a large number of, say 10000, realizations from  $\sup_x |\widetilde{W}(\infty,x)|$
- ${\, \bullet \, }$  compare them to the observed value of  $\sup_x |\mathcal{W}(\infty,x)|$

Outline









#### A skin cancer trial

Proportional Rates Models for Multivariate Panel Count Data



• Intensity functions:  $0.7(1+0.7t)^{-1}\eta \exp(\beta_{11}X_1 + \beta_{12}X_2)$  and  $0.4\eta \exp(\beta_{21}X_1 + \beta_{22}X_2)$ 

• 
$$(\beta_{11}, \beta_{12}) = (0.5, -0.5), (\beta_{21}, \beta_{22}) = (0, 0.6)$$

- $X_1 \sim \text{Ber}(0.5)$  and  $X_2 \sim \text{Un}(0,1)$
- $\eta \mid X_1, X_2 \sim \text{Gamma}(\text{mean} = 1, \text{variance} = X_1 + X_2)$
- Each subject has up to 3 examination times, uniformly distributed on [0,3]



|     | Summary statistics for the simulation studies on bivariate panel count data |        |               |       |      |       |              |        |               |                      |      |  |  |  |
|-----|-----------------------------------------------------------------------------|--------|---------------|-------|------|-------|--------------|--------|---------------|----------------------|------|--|--|--|
|     | Marginal model                                                              |        |               |       |      |       |              |        |               | Random-effects model |      |  |  |  |
| n   | Parameter                                                                   | Bias   | $\mathbf{SE}$ | SEE   | CP   | SEEn  | $_{\rm CPn}$ | Bias   | $\mathbf{SE}$ | SEE                  | CP   |  |  |  |
| 200 | $\beta_{11} = 0.5$                                                          | -0.003 | 0.218         | 0.232 | 95.9 | 0.129 | 75.4         | -0.174 | 0.201         | 0.214                | 89.0 |  |  |  |
|     | $\beta_{12} = -0.5$                                                         | -0.011 | 0.398         | 0.398 | 94.6 | 0.199 | 66.8         | -0.179 | 0.350         | 0.374                | 94.2 |  |  |  |
|     | $\beta_{21} = 0$                                                            | -0.007 | 0.225         | 0.212 | 94.5 | 0.100 | 63.7         | -0.176 | 0.187         | 0.197                | 87.5 |  |  |  |
|     | $\beta_{22} = 0.6$                                                          | -0.006 | 0.374         | 0.408 | 96.4 | 0.179 | 65.1         | -0.173 | 0.329         | 0.342                | 93.0 |  |  |  |
| 400 | $\beta_{11}=0.5$                                                            | -0.001 | 0.151         | 0.158 | 95.9 | 0.087 | 74.5         | -0.175 | 0.141         | 0.149                | 80.1 |  |  |  |
|     | $\beta_{12} = -0.5$                                                         | -0.006 | 0.279         | 0.274 | 94.3 | 0.135 | 65.2         | -0.173 | 0.247         | 0.258                | 91.2 |  |  |  |
|     | $\beta_{21} = 0$                                                            | -0.003 | 0.151         | 0.149 | 94.5 | 0.068 | 62.3         | -0.178 | 0.130         | 0.138                | 76.6 |  |  |  |
|     | $\beta_{22} = 0.6$                                                          | -0.005 | 0.263         | 0.275 | 95.6 | 0.121 | 63.3         | -0.171 | 0.227         | 0.237                | 89.9 |  |  |  |
| 800 | $\beta_{11} = 0.5$                                                          | 0.002  | 0.107         | 0.110 | 95.4 | 0.060 | 73.1         | -0.175 | 0.100         | 0.105                | 62.0 |  |  |  |
|     | $\beta_{12} = -0.5$                                                         | -0.003 | 0.196         | 0.193 | 94.7 | 0.093 | 64.7         | -0.175 | 0.172         | 0.179                | 85.1 |  |  |  |
|     | $\beta_{21} = 0$                                                            | -0.001 | 0.106         | 0.105 | 94.7 | 0.046 | 61.2         | -0.177 | 0.093         | 0.097                | 55.9 |  |  |  |
|     | $\beta_{22}=0.6$                                                            | -0.001 | 0.184         | 0.189 | 95.4 | 0.083 | 61.8         | -0.174 | 0.160         | 0.165                | 82.7 |  |  |  |

## Table 1 Summary statistics for the simulation studies on bivariate panel count data

*Note*: SE, SEE, and CP denote standard error, mean standard error estimator, and coverage probability of the 95% confidence interval. SEEn and CPn denote the mean standard error estimator and coverage of the 95% confidence interval by the naive method ignoring dependence of related event times.



|     | Summary statistics for the simulation studies on bivariate panel count data $% \left( f_{i}, f_{$ |        |       |         |                      |       |      |        |               |       |      |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------|----------------------|-------|------|--------|---------------|-------|------|--|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | М     | arginal | Random-effects model |       |      |        |               |       |      |  |
| n   | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bias   | SE    | SEE     | CP                   | SEEn  | CPn  | Bias   | $\mathbf{SE}$ | SEE   | CP   |  |
| 200 | $\beta_{11} = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.003 | 0.218 | 0.232   | 95.9                 | 0.129 | 75.4 | -0.174 | 0.201         | 0.214 | 89.0 |  |
|     | $\beta_{12} = -0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.011 | 0.398 | 0.398   | 94.6                 | 0.199 | 66.8 | -0.179 | 0.350         | 0.374 | 94.2 |  |
|     | $\beta_{21} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.007 | 0.225 | 0.212   | 94.5                 | 0.100 | 63.7 | -0.176 | 0.187         | 0.197 | 87.5 |  |
|     | $\beta_{22}=0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.006 | 0.374 | 0.408   | 96.4                 | 0.179 | 65.1 | -0.173 | 0.329         | 0.342 | 93.0 |  |
| 400 | $\beta_{11}=0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.001 | 0.151 | 0.158   | 95.9                 | 0.087 | 74.5 | -0.175 | 0.141         | 0.149 | 80.1 |  |
|     | $\beta_{12} = -0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.006 | 0.279 | 0.274   | 94.3                 | 0.135 | 65.2 | -0.173 | 0.247         | 0.258 | 91.2 |  |
|     | $\beta_{21} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.003 | 0.151 | 0.149   | 94.5                 | 0.068 | 62.3 | -0.178 | 0.130         | 0.138 | 76.6 |  |
|     | $\beta_{22} = 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.005 | 0.263 | 0.275   | 95.6                 | 0.121 | 63.3 | -0.171 | 0.227         | 0.237 | 89.9 |  |
| 800 | $\beta_{11} = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002  | 0.107 | 0.110   | 95.4                 | 0.060 | 73.1 | -0.175 | 0.100         | 0.105 | 62.0 |  |
|     | $\beta_{12} = -0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.003 | 0.196 | 0.193   | 94.7                 | 0.093 | 64.7 | -0.175 | 0.172         | 0.179 | 85.1 |  |
|     | $\beta_{21} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.001 | 0.106 | 0.105   | 94.7                 | 0.046 | 61.2 | -0.177 | 0.093         | 0.097 | 55.9 |  |
|     | $\beta_{22}=0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.001 | 0.184 | 0.189   | 95.4                 | 0.083 | 61.8 | -0.174 | 0.160         | 0.165 | 82.7 |  |

### Table 1

Note: SE, SEE, and CP denote standard error, mean standard error estimator, and coverage probability of the 95% confidence interval. SEEn and CPn denote the mean standard error estimator and coverage of the 95% confidence interval by the naive method ignoring dependence of related event times.



#### Table 1

Summary statistics for the simulation studies on bivariate panel count data

|     |                     |        | Marginal model |       |      |       |      |        |       | Random-effects model |      |  |  |  |
|-----|---------------------|--------|----------------|-------|------|-------|------|--------|-------|----------------------|------|--|--|--|
| n   | Parameter           | Bias   | SE             | SEE   | CP   | SEEn  | CPn  | Bias   | SE    | SEE                  | CP   |  |  |  |
| 200 | $\beta_{11} = 0.5$  | -0.003 | 0.218          | 0.232 | 95.9 | 0.129 | 75.4 | -0.174 | 0.201 | 0.214                | 89.0 |  |  |  |
|     | $\beta_{12} = -0.5$ | -0.011 | 0.398          | 0.398 | 94.6 | 0.199 | 66.8 | -0.179 | 0.350 | 0.374                | 94.2 |  |  |  |
|     | $\beta_{21} = 0$    | -0.007 | 0.225          | 0.212 | 94.5 | 0.100 | 63.7 | -0.176 | 0.187 | 0.197                | 87.5 |  |  |  |
|     | $\beta_{22} = 0.6$  | -0.006 | 0.374          | 0.408 | 96.4 | 0.179 | 65.1 | -0.173 | 0.329 | 0.342                | 93.0 |  |  |  |
| 400 | $\beta_{11} = 0.5$  | -0.001 | 0.151          | 0.158 | 95.9 | 0.087 | 74.5 | -0.175 | 0.141 | 0.149                | 80.1 |  |  |  |
|     | $\beta_{12} = -0.5$ | -0.006 | 0.279          | 0.274 | 94.3 | 0.135 | 65.2 | -0.173 | 0.247 | 0.258                | 91.2 |  |  |  |
|     | $\beta_{21} = 0$    | -0.003 | 0.151          | 0.149 | 94.5 | 0.068 | 62.3 | -0.178 | 0.130 | 0.138                | 76.6 |  |  |  |
|     | $\beta_{22} = 0.6$  | -0.005 | 0.263          | 0.275 | 95.6 | 0.121 | 63.3 | -0.171 | 0.227 | 0.237                | 89.9 |  |  |  |
| 800 | $\beta_{11} = 0.5$  | 0.002  | 0.107          | 0.110 | 95.4 | 0.060 | 73.1 | -0.175 | 0.100 | 0.105                | 62.0 |  |  |  |
|     | $\beta_{12} = -0.5$ | -0.003 | 0.196          | 0.193 | 94.7 | 0.093 | 64.7 | -0.175 | 0.172 | 0.179                | 85.1 |  |  |  |
|     | $\beta_{21} = 0$    | -0.001 | 0.106          | 0.105 | 94.7 | 0.046 | 61.2 | -0.177 | 0.093 | 0.097                | 55.9 |  |  |  |
|     | $\beta_{22} = 0.6$  | -0.001 | 0.184          | 0.189 | 95.4 | 0.083 | 61.8 | -0.174 | 0.160 | 0.165                | 82.7 |  |  |  |

*Note*: SE, SEE, and CP denote standard error, mean standard error estimator, and coverage probability of the 95% confidence interval. SEEn and CPn denote the mean standard error estimator and coverage of the 95% confidence interval by the naive method ignoring dependence of related event times.







| - 01            |         | First event |         | Second event |         |         |  |  |
|-----------------|---------|-------------|---------|--------------|---------|---------|--|--|
| Test            | n = 200 | n = 400     | n = 800 | n = 200      | n = 400 | n = 800 |  |  |
| Proportionality | 0.037   | 0.044       | 0.046   | 0.038        | 0.042   | 0.047   |  |  |
| Functional form | 0.027   | 0.037       | 0.043   | 0.029        | 0.038   | 0.042   |  |  |
| Link function   | 0.029   | 0.039       | 0.042   | 0.032        | 0.039   | 0.042   |  |  |
| Omnibus         | 0.021   | 0.030       | 0.037   | 0.020        | 0.031   | 0.042   |  |  |

 Table 2

 Type I error rates for different types of supremum tests

Outline







Simulation studies

#### A skin cancer trial

Proportional Rates Models for Multivariate Panel Count Data

### A skin cancer trial



#### Basal cell carcinoma and squamous cell carcinoma

- 143 patients were randomized to receive treatment
- 147 were assigned to placebo

#### Examinations: every 6 months

#### **Covariates:**

- treatment indicator
- gender
- age at diagnosis dichotomized as  $\geq$  65 versus < 65 years
- number of prior skin tumors at baseline

A skin cancer trial





#### A skin cancer trial



|                      | Basal cell carcinoma |           |                 | Squame   | ous cell carc | inoma       | 1        | Any cancer |                 |  |
|----------------------|----------------------|-----------|-----------------|----------|---------------|-------------|----------|------------|-----------------|--|
|                      | Estimate             | Std error | <i>p</i> -value | Estimate | Std error     | p-value     | Estimate | Std error  | <i>p</i> -value |  |
| Marginal model       |                      |           |                 |          |               |             |          |            |                 |  |
| Treatment            | -0.167               | 0.152     | 0.274           | -0.008   | 0.273         | 0.976       | -0.108   | 0.138      | 0.436           |  |
| Log(prior tumors)    | 0.730                | 0.083     | $< 10^{-3}$     | 0.927    | 0.159         | $< 10^{-3}$ | 0.791    | 0.083      | $< 10^{-3}$     |  |
| Male                 | 0.045                | 0.184     | 0.806           | 0.560    | 0.380         | 0.141       | 0.209    | 0.163      | 0.200           |  |
| $Age \ge 65$         | -0.210               | 0.154     | 0.172           | 0.741    | 0.262         | 0.005       | 0.111    | 0.132      | 0.398           |  |
| Random-effects model |                      |           |                 |          |               |             |          |            |                 |  |
| Treatment            | -0.095               | 0.173     | 0.582           | -0.137   | 0.188         | 0.465       | -0.056   | 0.141      | 0.692           |  |
| Log(prior tumors)    | 0.861                | 0.105     | $< 10^{-3}$     | 0.903    | 0.120         | $< 10^{-3}$ | 0.874    | 0.084      | $< 10^{-3}$     |  |
| Male                 | 0.137                | 0.170     | 0.419           | 0.669    | 0.218         | 0.002       | 0.272    | 0.147      | 0.064           |  |
| $Age \ge 65$         | -0.236               | 0.178     | 0.183           | 0.808    | 0.251         | 0.001       | 0.097    | 0.154      | 0.530           |  |

# Table 4 Regression analysis of panel count data in a skin cancer chemoprevention trial



# Thank you!