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Sufficient dimensionality reduction

Sufficient dimensionality reduction: a framework of dimensionality
reduction in a supervised learning setting of analyzing an input-output
relation.
Input: state-action pair ps, aq; Output: next state s 1.
Goal: find a matrix W which induces a linear projection of input ps, aq:

z “ W
ˆ

s
a

˙

,

such that s 1 and ps, aq are conditionally independent given z and
W WJ

“ I.
z contains all information about s 1:

pps, a, s 1 | zq “ pps, a | zqpps 1 | zq ô pps 1 | s, aq “ pps 1 | zq
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Conditional Independence
Squared-loss conditional entropy (SCE) is defined as

SCE
`

s 1 | z
˘

“ ´
1
2

ĳ

p
`

s 1 | z
˘

p
`

s 1, z
˘

dzds 1

“ ´
1
2

ĳ

`

p
`

s 1 | z
˘

´ 1
˘2 ppzqdzds 1 ´ 1` 1

2

ż

ds 1

It was shown in Tangkaratt et al. (2015) that

SCE
`

s 1 | z
˘

ě SCE
`

s 1 | s, a
˘

,

and the equality holds if and only if the conditional independence holds.
Sufficient dimensionality reduction can be performed by minimizing
SCE ps 1 | zq with respect to W :

W˚
“ argmin

WPG
SCE

`

s 1 | z
˘

,

where G denotes the Grassmann manifold, which is the set of matrices W
such that W WJ

“ I without redundancy in terms of the span.
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Conditional Independence

Employ the LSCDE method introduced in Chapter 10 to obtain an
estimator pp ps 1 | zq of conditional density p ps 1 | zq.
Then, SCE can be approximated as

ySCE
`

s 1 | z
˘

“ ´
1

2M

M
ÿ

m“1
pp
`

s 1m | zm
˘

“ ´
1
2
rαJpv

where

zm “ W
ˆ

sm
am

˙

and pv “ 1
M

M
ÿ

m“1
φ
`

zm, s 1m
˘

.

φ pz, s 1q is the basis function vector used in LSCDE and rα is the LSCDE
solution given by

rα “ ppU ` λIq´1
pv .
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Dimensionality Reduction with SCE
With the above SCE estimator, a practical formulation for sufficient
dimensionality reduction is given by

xW “ argmax
WPG

SpW q, where SpW q “ rαJpv .

The gradient of SpW q with respect to W`,`1 is given by

BS
BW`,`1

“ ´rαJ
B pU
BW`,`1

rα` 2 BpvJ

BW`,`1

rα

On the Grassmann manifold, the natural gradient (the projection of the
ordinary gradient to the tangent space of the Grassmann manifold) gives
the steepest direction.
If the tangent space is equipped with the canonical metric
pW ,W 1

q “ 1
2 trpWJW 1

q, the natural gradient at W is

BS
BW WJ

KWK,

where WK is the matrix such that rWJ,WJ
Ks is an orthogonal matrix.
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Dimensionality Reduction with SCE

The geodesic from W to the direction of the natural gradient over the
Grassmann manifold can be expressed using t P R as

W t “
“

I O
‰

exp
˜

´t
«

O BS
BW WJ

K

´WK
BS
BW

J O

ff¸

„

W
WK



.

Then line search along the geodesic in the natural gradient direction is
performed by finding the maximizer from tW t | t ě 0u (Edelman et al.,
1998).
Keep updating W until it converges. Final solution is normalized as

pp
`

s 1 | z
˘

“
pαJφ pz, s 1q

ş

pαJφ pz, s2qds2
,

where pαb “ max p0, rαbq.
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Relation to Squared-Loss Mutual Information

The above dimensionality reduction method minimizes SCE:

SCE
`

s 1 | z
˘

“ ´
1
2

ĳ p pz, s 1q2

ppzq dzds 1.

On the other hand, the dimensionality reduction method proposed in
Suzuki and Sugiyama (2013) maximizes squared-loss mutual information
(SMI):

SMI
`

z, s 1
˘

“
1
2

ĳ p pz, s 1q2

ppzqp ps 1qdzds 1.

The essential difference between SCE and SMI is whether p ps 1q is included
in the denominator of the density ratio.
SCE-based dimensionality reduction is expected to work better than
SMI-based dimensionality reduction.
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Artificial and Benchmark Datasets

The following dimensionality reduction schemes are compared:
None: No dimensionality reduction is performed.
SCE (Section 11.2): Dimensionality reduction is performed by
minimizing the least-squares SCE approximator using natural gradients
over the Grassmann manifold (Tangkaratt et al., 2015).
SMI (Section 11.2.3): Dimensionality reduction is performed by
maximizing the least-squares SMI approximator using natural gradients
over the Grassmann manifold (Suzuki & Sugiyama, 2013).
True: The ”true” subspace is used (only for artificial datasets).
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Artificial and Benchmark Datasets

After dimensionality reduction, the following conditional density estimators are
run:

LSCDE (Section 10.1.3): Least-squares conditional density estimation
(Sugiyama et al., 2010).
εKDE (Section 10.1.2): ε-neighbor kernel density estimation, where ε is
chosen by least-squares cross-validation.
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Conditional Density Estimation

Input x “
`

x p1q, . . . , x p5q
˘J; Output: y .

x p1q is relevant to predicting the output y ; x p2q, . . . , x p5q are standard
Gaussian noise.
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Artificial Datasets

Input x “
`

x p1q, . . . , x p5q
˘J; Output: y .

Each element of x follows the standard Gaussian distribution and y is
given by
(a) y “ x p1q

` px p1q
q

2
` px p1q

q
3
` ε,

(b) y “ px p1q
q

2
` px p2q

q
2
` ε,

where ε „ Np0, p1{4q2q.
Dimensionality reduction error:

ErrorDR “

›

›

›

›

xW
J
xW ´W˚JW˚

›

›

›

›

Frobenius

Conditional density estimation error between true ppy | xq and its estimate
pppy | xq, evaluated by the squared loss:

ErrorCDE “
1

2n1
n1
ÿ

i“1

ż

pp py | rx iq
2 dy ´ 1

n1
n1
ÿ

i“1
pp pryi | rx iq
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Artificial Datasets
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Artificial Datasets
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UCI benchmark datasets
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UCI benchmark datasets
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Remarks

Coping with high dimensionality of the state and action spaces is one of
the most important challenges in model-based reinforcement learning.
The squared-loss conditional entropy (SCE) for dimensionality reduction
can be estimated by LSCDE. This allowed us to perform dimensionality
reduction and conditional density estimation simultaneously in an
integrated manner.
In contrast, SMI-based method yields a two-step procedure of first
reducing the dimensionality and then the conditional density is estimated.
SCE-based dimensionality reduction was shown to outperform the
SMI-based method, particularly when output follows a skewed distribution.
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