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Sufficient dimensionality reduction Il

o Sufficient dimensionality reduction: a framework of dimensionality
reduction in a supervised learning setting of analyzing an input-output
relation.

@ Input: state-action pair (s, a); Output: next state s’.

o Goal: find a matrix W which induces a linear projection of input (s, a):

such that s’ and (s, a) are conditionally independent given z and
ww' =1

@ z contains all information about s’:

p(s,a,s' | 2) = p(s.a| 2)p(s' | 2) = p(s | s,2) = p(s' | 2)
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Conditional Independence i

o Squared-loss conditional entropy (SCE) is defined as
1
SCE(s' | z) = -5 ij (s'| z) p(s',z) dzds’
1 ’ 2 ’ 1 ’
-3 (p(s'|2z) —1)" p(z)dzds —1+3 ds
o It was shown in Tangkaratt et al. (2015) that
SCE(s' | z) > SCE (s | s,a),

and the equality holds if and only if the conditional independence holds.

o Sufficient dimensionality reduction can be performed by minimizing
SCE (s' | z) with respect to W:

W* = argminSCE (s’ | z),
WeG

where G denotes the Grassmann manifold, which is the set of matrices W
such that WW = I without redundancy in terms of the span.
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Conditional Independence

o Employ the LSCDE method introduced in Chapter 10 to obtain an
estimator p (s’ | z) of conditional density p (s’ | z).

@ Then, SCE can be approximated as

where

o ¢(z,s') is the basis function vector used in LSCDE and ¢ is the LSCDE

solution given by R
o= U+t
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Dimensionality Reduction with SCE m

o With the above SCE estimator, a practical formulation for sufficient
dimensionality reduction is given by

W= argmaxS(W), where S(W) = &' v.
WeG

o The gradient of S(W) with respect to W, ¢ is given by

oS - U vl

B 2
Wee © W T W

@ On the Grassmann manifold, the natural gradient (the projection of the
ordinary gradient to the tangent space of the Grassmann manifold) gives
the steepest direction.

o If the tangent space is equipped with the canonical metric
(W, W) = Lir(WT W), the natural gradient at W is

0S
aw Wi

where W is the matrix such that [W', W] is an orthogonal matrix.
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Dimensionality Reduction with SCE RS

@ The geodesic from W to the direction of the natural gradient over the
Grassmann manifold can be expressed using t € R as

o 2 W] w
W,=|[1 O]exp(—t[_WLgTsvT o |:WL:|

@ Then line search along the geodesic in the natural gradient direction is
performed by finding the maximizer from {W, | t > 0} (Edelman et al.,
1998).

o Keep updating W until it converges. Final solution is normalized as

a'¢(z,9)
&' ¢(z,8")ds"

p(s'12) =

where &p = max (0, dp).
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Relation to Squared-Loss Mutual Information M

@ The above dimensionality reduction method minimizes SCE:

SCE(s' | z) = —% JJ p<pz(’—zs),>2dzds’.

@ On the other hand, the dimensionality reduction method proposed in
Suzuki and Sugiyama (2013) maximizes squared-loss mutual information

(SMI):
SMi (z,5') H zs/dds
S

o The essential difference between SCE and SMI is whether p (s’) is included
in the denominator of the density ratio.

o SCE-based dimensionality reduction is expected to work better than
SMI-based dimensionality reduction.

Squared-Loss Conditional Entropy 13 /24
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Artificial and Benchmark Datasets uw

The following dimensionality reduction schemes are compared:
o None: No dimensionality reduction is performed.

o SCE (Section 11.2): Dimensionality reduction is performed by
minimizing the least-squares SCE approximator using natural gradients
over the Grassmann manifold (Tangkaratt et al., 2015).

@ SMI (Section 11.2.3): Dimensionality reduction is performed by
maximizing the least-squares SMI approximator using natural gradients
over the Grassmann manifold (Suzuki & Sugiyama, 2013).

o True: The "true” subspace is used (only for artificial datasets).
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Artificial and Benchmark Datasets

After dimensionality reduction, the following conditional density estimators are
run:

o LSCDE (Section 10.1.3): Least-squares conditional density estimation
(Sugiyama et al., 2010).

o cKDE (Section 10.1.2): e-neighbor kernel density estimation, where € is
chosen by least-squares cross-validation.

Numerical Examples 16 / 24
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o Input x = (xM), ... ,x(s))T; Output: y.

o x(M s relevant to predicting the output y; x@, ...

Gaussian noise.

6 i
i - Sample
i Plain-LSCDE
i SCE-LSCDE
4
> 2 -
3
3
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(a) Bone mineral density

,x®) are standard
6 H i+ Sample
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CE-LSCDE

(b) Old Faithful geyser

FIGURE 11.1: Examples of conditional density estimation by plain LSCDE

and SCE-LSCDE.
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Artificial Datasets

o Input x = (xM), ... ,x(5))T; Output: y.
o Each element of x follows the standard Gaussian distribution and y is
given by
(a) y=xW + (x1)? 4 (xV) ¢,
(b) y = (xW)2+ (x®)? +e,
where € ~ N(0, (1/4)?).

o Dimensionality reduction error:

T o~
Errorpr = ’ w w- w*Tw*

Frobenius

o Conditional density estimation error between true p(y | x) and its estimate
p(y | x), evaluated by the squared loss:

1 n' ~ o 1 n' s N
ErrorCDE=ﬁ;J.p(y|Xi) dy—F;P(Yi|Xi)
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FIGURE 11.2: Top row: The mean and standard error of the dimensionality
reduction error over 20 runs on the artificial datasets. 2nd row: Histograms
of output {;}29. 3rd and 4th rows: The mean and standard error of the

conditional density estimation error over 20 runs.
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UCI benchmark datasets

TABLE 11.1: Mean and standard error of the conditional density estimation error over 10 runs for various datasets (smaller
is better). The best method in terms of the mean error and comparable methods according to the two-sample paired t-test

at the significance level 5% are specified by bold face.

Dataset (de,dy) n SCE-based SMI-based No reduction Scale
7Y LSCDE K LSCDE <KDE LSCDE eKD:
Housing | (13,1) 100]| —1.73(.09) | —1.67(.11) | —1.91(.05)| —1.62(.08) | —1.41(.05) | —1.13(.01) | x1
Auto MPG | (7,1) 100| —1.80(.04) | —1.74(.06) | —1.85(.04) | —1.77(.05) | —1.75(.04) | —1.46(.04) | x1
Servo (4,1) 50 | —2.92(.18) |—3.03(.14) | —2.69(.18) | —2.95(.11) | —2.62(.09) | —2.72(.06) | x1
Yacht (6,1) 80 | —6.46(.02) |—6.23(.14) | —5.63(.26) | —5.47(.20) | —1.72(.04) | -2.95(.02) | x1
Physicochem| (9,1) 500| —1.19(.01) | —0.99(.02) | —1.20(.01) | —0.97(.02) | —1.19(.01)|—0.91(.01) | x1
White Wine | (11,1) 400| —2.31(.01) |-2.47(.15) | —2.35(.02) | —2.60(.12) | —2.06(.01) | —1.89(.01) | x1
Red Wine | (11,1) 300| —2.85(.02) | —1.95(.17) | —2.82(.03)| —1.93(.17) | —2.03(.02) | -1.13(.04) | x1
Forest Fires | (12,1) 100| —7.18(.02) | —6.93(.03) | —6.93(.04) | —6.93(.02) | —3.40(.07) | -6.96(.02) | x1
Concrete | (8,1) 300| —1.36(.03) | —1.20(.06) | —1.30(.03) | —1.18(.04) | —1.11(.02) | —0.80(.03) | x1
Energy (8,2) 200| —7.13(.04) | —4.18(.22) | —6.04(.47) | —3.41(.49) | —2.12(.06) | —1.95(.14) | x10
Stock (7,2) 100| —8.37(:53) |—9.75(.37) | —9.42(.50) | —10.27(.33) | —7.35(.13) | —9.25(.14) | x1
2 Joits | (6,4) 100| —10.49(.86) | —7.50(.54) | —8.00(:84) | —7.44(.60) | —3.95(.13) | —3.65(.14) | X1
4 Joints | (12,8) 200| —2.81(.21) | —1.73(.14) | —2.06(.25) | —1.38(.16) | —0.83(.03) | —0.75(.01) | x10
9 Joints | (27,18) 500 | —8.37(.83) | —2.44(.17) | —9.74(.63) | —2.37(.51) | —1.60(.36) | —0.89(.02) | x100
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UCI benchmark datasets o

TABLE 11.2: Mean and standard error of the chosen subspace dimensional-
ity over 10 runs for benchmark and robot transition datasets.

SCE-based SMI-based
Dataset | (dx,dy) 15CDE T eRKDE | TSCDE | €KDE

Housing | (13,1) | 3.9(0.74) | 2.0(0.79) | 2.0{0.39) | 1.3(0.15)

Auto MPG | (7,1) | 3.2(0.66) | 1.3(0.15) | 2.1(0.67) | 1.1(0.10)
Servo 4,1) | 1.9(0.35) | 2.4(0.40) | 2.2(0.33) | 1.6(0.31)
Yacht (6,1) | 1.0(0.00) | 1.0(0.00) | 1.0(0.00) | 1.0(0.00)

Physicochem | (9,1) | 6.5(0.58) | 1.9(0.28) | 6.6(0.58) | 2.6(0.86)

White Wine | (11,1) | 1.2(0.13) | 1.0(0.00) | 1.4(0.31) | 1.0(0.00)
Red Wine | (11,1) | 1.0(0.00) | 1.3(0.15) | 1.2(0.20) | 1.0(0.00)
Forest Fires | (12,1) | 1.2(0.20) | 4.9(0.99) | 1.4(0.22) | 6.8(1.23)
Concrete (8,1) | 1.0(0.00) | 1.0(0.00) | 1.2(0.13) | 1.0(0.00)
Energy (8,2) | 5.9(0.10) | 3.9(0.80) | 2.1(0.10) | 2.0(0.30)
Stock (7,2) | 3.2(0.83) | 2.1(0.59) | 2.1(0.60) | 2.7(0.67)

2 Joints (6,4) | 2.9(0.31) | 2.7(0.21) | 2.5(0.31) | 2.0(0.00)

4 Joints (12,8) | 5.2(0.68) | 6.2(0.63) | 5.4(0.67) | 4.6(0.43)

9 Joints | (27,18) | 13.8(1.28) | 15.3(0.94) | 11.4(0.75) | 13.2(1.02)
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Remarks jm

o Coping with high dimensionality of the state and action spaces is one of
the most important challenges in model-based reinforcement learning.

o The squared-loss conditional entropy (SCE) for dimensionality reduction
can be estimated by LSCDE. This allowed us to perform dimensionality
reduction and conditional density estimation simultaneously in an
integrated manner.

@ In contrast, SMI-based method yields a two-step procedure of first
reducing the dimensionality and then the conditional density is estimated.

o SCE-based dimensionality reduction was shown to outperform the
SMI-based method, particularly when output follows a skewed distribution.
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