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The Proportional Odds Model Under Right Censoring

The proportional odds model for right censored data has been studied
extensively in Sections 15.3 and 19.2.2 and several places in Chapter 20.
The main steps for estimation and inference that have been discussed for
this model are:

Developing a method of estimation.

Establishing consistency of the estimator.

Establishing the rates of convergence.

Obtaining weak convergence for all regular parameters.

Establishing efficiency of all regular parameters.

Obtaining convergence of non-regular parameters.

Developing a method of inference (Theorems 19.5 and 19.6 will
establish the validity of the profile sampler).

Studying the properties of estimation and inference under model
misspecification.
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The Proportional Odds Model Under Right Censoring

In practice, a researcher may need to iterate between several of these
steps before achieving all of the desired conclusions.

For instance, it may take a few iterations to arrive at a
computationally feasible and efficient estimator, or, it may take a few
iterations to arrive at the optimal rate of convergence.

The focus of this example will be on establishing the conditions of
Theorems 19.5 and 19.6 as mentioned above, since these are the only
missing pieces in establishing the validity of the profile sampler for the
proportional odds model under right censoring.
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Conditions in Theorem 19.5

Define
ℓ(t, θ, η) ≡ l (t, ηt(θ, η)) ,

ℓ̇(t, θ, η) ≡ (∂/(∂t))ℓ(t, θ, η),

ℓ̈(t, θ, η) ≡ (∂/(∂t))ℓ̇(t, θ, η),

η̂θ ≡ argmaxη Ln(θ, η),

and assume that for any possibly random sequence θ̃n
P→ θ0, we have

η̂θ̃n
P→ η (1)

P0ℓ̇(θ0, θ̃n, η̂θ̃n) = oP0(∥θ̃n − θ0∥+ n−1/2) (2)
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Conditions in Theorem 19.6

Define ∆n(θ) ≡ n−1(pLn(θ)− pLn(θ̂n)). Assume that for every random
sequence θ̃n ∈ Θ,

∆n(θ̃n) = oP0(1) implies that θ̃n = θ0 + oP0(1). (3)
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The Proportional Odds Model Under Right Censoring

Recall from Section 19.2.2 that we use A for the baseline integrated
“hazard” instead of Λ and

At(β,A) =

∫ (·)

0

(
1 + (β − t)′h0(s)

)
dA(s)

where h0(s) =
[
σ22θ0

]−1
σ21θ0 (·)(s) is the least favorable direction, satisfies

Conditions 19.2 and 19.3.
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The Proportional Odds Model Under Right Censoring

Hence,

ℓ̇(t, β,A) =

(
∂

∂t

)
ℓ (t,At(β,A))

=

(
∂

∂t

){
δ
(
log∆At(β,A)(U) + t ′Z

)
−(1 + δ) log

(
1 + et

′ZAt(β,A)(U)
)}

=

∫ τ

0

(
Z − h0(s)

1 + (β − t)′h0(s)

)
×

[
dN(s)− (1 + δ)

Y (s)et
′ZdAt(β,A)(s)

1 + et′ZAt(β,A)(U ∧ τ)

]
(4)
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The Proportional Odds Model Under Right Censoring

and

ℓ̈(t, β,A) =

(
∂

∂t

)
ℓ̇(t, β,A)

= −
∫ τ

0

h⊗2
0 (s)

(1 + (β − t)′h0(s))
2

[
dN(s)− (1 + δ)

Y (s)et
′ZdAt(β,A)(s)

1 + et′ZAt(β,A)(U ∧ τ)

]

− (1 + δ)

∫ τ

0

[
Z − h0(s)

1 + (β − t)′h0(s)

]⊗2 Y (s)et
′ZdAt(β,A)(s)

1 + et′ZAt(β,A)(U ∧ τ)

+ (1 + δ)

{∫ τ

0

[
Z − h0(s)

1 + (β − t)′h0(s)

]
Y (s)et

′ZdAt(β,A)(s)

1 + et′ZAt(β,A)(U ∧ τ)

}⊗2
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The Proportional Odds Model Under Right Censoring

Hence it is easy to see that both (t, β,A) 7→ ℓ̇(t, θ,A)(X ) and (t, β,A) 7→
ℓ̈(t, θ,A)(X ) are continuous for P0-almost every X . Although it is tedious,
it is not hard to verify that for some uniform neighborhood V of
(β0, β0,A0),

F1 ≡ {ℓ̇(t, β,A) : (t, β,A) ∈ V }

is P0-Donsker and

F2 ≡ {ℓ̈(t, β,A) : (t, β,A) ∈ V }

is P0-Glivenko-Cantelli (Exercise 22.6.1).
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The Proportional Odds Model Under Right Censoring

Now consider any sequence β̃n
P→ β0, and let Âβ̃n

be the profile maximizer

at β = β̃n, i.e., Âβ̃n
= argmaxA Ln(A, β̃n), where Ln is the loglikelihood as

defined in Section 15.3.1. The arguments in Section 15.3.2 can be
modified to verify that Âβ̃n

(τ) is asymptotically bounded in probability.
Since, by definition,

Ln(β̂n, Ân) ≥ Ln(β̃n, Âβ̃n
) ≥ Ln(β̃n, Ãn),

where Ãn is as defined in Section 15.3.3, we can argue along the lines used
in Section 15.3.3 to obtain that Âβ̃n

is uniformly consistent for A0.
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The Proportional Odds Model Under Right Censoring

We now wish to strengthen this last result to

∥Âβ̃n
− A0∥[0,τ ] = OP(n

−1/2 + ∥β̃n − β0∥) (5)

for any sequence β̃n
P→ β0. If (5) holds, then, as shown by Murphy and

van der Vaart (2000) in the discussion following their Theorem 1,

P ℓ̇(β0, β̃n, Âβ̃n
) = oP(n

−1/2 + ∥β̃n − β0∥),

and thus both Conditions (1) and (2) hold. Hence all of the conditions of
Theorem 19.5 hold.
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The Proportional Odds Model Under Right Censoring

We now show (5). The basic idea of the proof is similar to arguments
given in the proof of Theorem 3.4 in Lee (2000). Recall the definition of
V τ
n,2. The derivative of Ln (θ,At) with respect to t evaluated at t = 0 is

the score function for A:

V τ
n,2(θ) (h1) ≡ Pn

{∫ τ

0
h1(s)dN(s)− (1 + δ)

[
eβ

′Z
∫ U∧τ
0 h1(s)dA(s)

1 + eβ′ZA(U ∧ τ)

]}

Define, for all h ∈ H2
∞,

D̃n(A)(h) ≡ V τ
n,2(β̃n,A)(h), Dn(A)(h) ≡ V τ

n,2 (β0,A) (h),

and
D0(A)(h) ≡ PV τ

n,2 (β0,A) (h)

By definition of a maximizer, D̃n(Âβ̃n
)(h) = 0 and D0 (A0) (h) = 0 for all

h ∈ H2
∞.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)Case Studies 02/11/2022 13 / 38



The Proportional Odds Model Under Right Censoring

By Lemma 13.3,
√
n(D̃n − D0)(Âβ̃n

)−
√
n(D̃n − D0) (A0) = oP(1)

uniformly in ℓ∞
(
H2

1

)
, where H2

1 is the subset of H2
∞ consisting of

functions of total variation ≤ 1. By the differentiability of the score
function, we also have

√
n(D̃n (A0)− Dn (A0)) = OP(

√
n∥β̃n − β0∥)

uniformly in ℓ∞
(
H2

1

)
. Combining the previous two displays, we have

√
n(D0(Âβ̃n

)− D0 (A0)) =−
√
n(D̃n(Âβ̃n

)− D0(Âβ̃n
))

=−
√
n(D̃n − D0)(A0) + oP(1)

=−
√
n(Dn − D0)(A0)

+ OP(1 +
√
n∥β̃n − β0∥)

=OP(1 +
√
n∥β̃n − β0∥).
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The Proportional Odds Model Under Right Censoring

Note that D0(A)(h) =
∫ τ
0 (σ

22
β0,A0

h)dA(s), where σ22 is as defined in

Section 15.3.4. Since σ22β0,A0
is continuously invertible as shown in Section

19.2.2, we have that there exists some c > 0 such that√
n(D0(Âβ̃n

)− D0(A0)) ≥ c∥Âβ̃n
− A0∥H2

1
. Thus (5) is satisfied.
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The Proportional Odds Model Under Right Censoring

The only thing remaining to do for this example is to verify (3), after
replacing θ̃n with β̃n and Θ with B. For each β ∈ B, let

Aβ ≡ argmaxA P

[
dPβ,A

dPβ0,A0

]
where P = Pβ0,A0 by definition, and define

∆̃n(β) ≡ P

[
dPβ,Aβ

dPβ̂n,Ân

]
and ∆0(β) ≡ P

[
dPβ,Aβ

dPβ0,A0

]
Theorem 2 of Kosorok, Lee and Fine (2004) is applicable here since the
proportional odds model is a special case of the odds rate model with
frailty variance parameter γ = 1.
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The Proportional Odds Model Under Right Censoring

Hence,

sup
β∈B

∣∣∣∆n(β)− ∆̃n(β)
∣∣∣ = oP(1)

The smoothness of the model now implies

sup
β∈B

∣∣∣∆̃n(β)−∆0(β)
∣∣∣ = oP(1)

and thus
sup
β∈B

|∆n(β)−∆0(β)| = oP(1)

As a consequence, we have for any sequence β̃n ∈ B, that ∆n(β̃n) = oP(1)

implies ∆0(β̃n) = oP(1). Hence β̃n
P→ β0 by model identifiability, and (3)

follows.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)Case Studies 02/11/2022 17 / 38



Temporal Process Regression

In this example, we will study estimation for a varying coefficient
regression model for temporal process data (Fine et al., 2004).

Consider, for example, bone marrow transplantation studies in which
the time-varying effect of a certain medication on the prevalence of
graft versus host GVH disease may be of scientific interest.

Let the outcome measure be denoted Y (t), where t is restricted to a
finite time interval [l , u].

In the example, Y (t) is a dichotomous process indicating the presence
of GVH at time t.

More generally, we allow Y to be a stochastic process, but we require
Y to have square-integrable total variation over [l , u].
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Temporal Process Regression

We model the mean of the response Y at time t as a function of a
k-vector of time-dependent covariates X (t) and a time-dependent
stratification indicator S(t) as follows:

E [Y (t) | X (t),S(t) = 1] = g−1
(
β′(t)X (t)

)
, (6)

where the link function g is monotone, differentiable and invertible,
and β(t) = {β1(t), . . . , βk(t)}′ is a k-vector of time-dependent
regression coefficients.

For the bone marrow example, g−1(u) = eu/ (1 + eu) would yield a
time-indexed logistic model, with β(t) denoting the changes in log
odds ratios over time for GVH disease prevalence per unit increase in
the covariates.
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Temporal Process Regression

No Markov assumption is involved here since the conditioning in (6)
only involves the current time and not previous times.

In addition to the stratification indicator S(t), it is useful to include a
non-missing indicator R(t), for which R(t) = 1 if {Y (t),X (t),S(t)}
is fully observed at t, and R(t) = 0 otherwise.

We assume that Y (t) and R(t) are independent conditionally on
{X (t),S(t) = 1}.
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Temporal Process Regression

The approach we take for inference is to utilize that fact that the
model only posits the conditional mean of Y (t) and not the
correlation structure.

Thus we can construct ”working independence” estimating equations
to obtain simple, nonparametric estimators.

The pointwise properties of these estimators follows from standard
estimating equation results, but uniform properties are quite nontrivial
to establish since martingale theory is not applicable here. We will use
empirical process methods.
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Temporal Process Regression

The observed data consists of n independent and identically
distributed copies of {R(t) : t ∈ [l , u]} and
({Y (t),X (t),S(t)} : R(t) = 1, t ∈ [l , u]).

We can compute an estimator β̂n(t) for each t ∈ [l , u] as the root of
Un(β(t), t) ≡ PnA(β(t), t), where

A(β(t), t) ≡ S(t)R(t)D(β(t))V (β(t), t)
[
Y (t)− g−1

(
β′(t)X (t)

)]
,

where D(u) ≡ ∂
[
g−1 (u′X (t))

]
/(∂u) is a column k-vector-valued

function and V (β(t), t) is a time-dependent and possibly
data-dependent scalar-valued weight function.
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Temporal Process Regression

Here are the specific data and estimating equation assumptions we will
need:

i (Si ,Ri ,Xi ,Yi ) , i = 1, . . . , n, are i.i.d. and all component processes are
cadlag. We require S ,R and X to all have total variation over [l , u]
bounded by a fixed constant c <∞, and we require Y to have total
variation Ỹ over [l , u] which has finite second moment.

ii t 7→ β(t) is cadlag on [l , u].

iii h ≡ g−1 and ḣ = ∂h(u)/(∂u) are Lipschitz continuous and bounded
above and below on compact sets.

iv We require

inf
t∈[l ,u]

eigmin P
[
S(t)R(t)X (t)X ′(t)

]
> 0,

where eigmin denotes the minimum eigenvalue of a matrix.

v For all bounded B ⊂ Rk , the class of random functions {V (b, t) : b ∈
B, t ∈ [l , u]} is bounded above and below by positive constants and is
BUEI and PM.
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Temporal Process Regression

The form of the estimator will depend on the form of the observed
data. The estimator jumps at those M times where

t 7→ ({Yi (t),Xi (t), Si (t)} : Ri (t) = 1)

and t 7→ Ri (t) jumps, i = 1, . . . , n.

If Yi (t) and Xi (t) are piecewise constant, then so also is β̂n. In this
situation, finding β̂n (as a process) involves solving t 7→ Un(β(t), t) at
these M time points.

For most practical applications, Y and X will be either
piecewise-constant or continuous, and, therefore, so will β̂n.

In the piecewise-constant case, we can interpolate in a
right-continuous manner between the M jump points, otherwise, we
can smoothly interpolate between them.

When M is large, the differences between these two approaches will
be small.
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Temporal Process Regression

The bounded total variation assumptions on the data make the
transition from pointwise to uniform estimation and inference both
theoretically possible and practically feasible.

In this light, we will assume hereafter that β̂n can be computed at
every value of t ∈ [l , u].

We will now discuss consistency, asymptotic normality, and inference
based on simultaneous confidence bands.

Several interesting examples of data analyses and simulation studies
for this set-up are given in Fine, Yan and Kosorok (2004).
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Temporal Process Regression: Consistency

The following theorem gives us existence and consistency of β̂n and the
above conditions:

Theorem (22.3)

Assume (6) holds with true parameter {β0(t) : t ∈ [l , u]}, where
supt∈[l ,u] |β0(t)| <∞. Let β̂n = {β̂n(t) : t ∈ [l , u]} be the smallest, in
uniform norm, root of {Un(β(t), t) = 0 : t ∈ [l , u]}. Then such a root
exists for all n large enough almost surely, and

sup
t∈[l ,u]

∣∣∣β̂n(t)− β0(t)
∣∣∣ as*→ 0.
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Temporal Process Regression: Consistency

Proof. Define

C (γ, β, t) ≡ S(t)R(t)D(γ(t))V (γ, t)
[
Y (t)− h

(
β′(t)X (t)

)]
,

where γ, β ∈ {ℓ∞c ([l , u])}k and ℓ∞c (H) is the collection of bounded real
functions on the set H with absolute value ≤ c . Let

G ≡ {C (γ, β, t) : γ, β ∈ {ℓ∞c ([l , u])}k , t ∈ [l , u]}.
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Temporal Process Regression: Consistency

The first step is to show that G is BUEI and PM with square-integrable
envelope for each c <∞. This implies that G is P-Donsker and hence also
P-Glivenko-Cantelli. We begin by observing that the classes{

β′(t)X (t) : β ∈ {ℓ∞c ([l , u])}k , t ∈ [l , u]
}

and {
b′X (t) : b ∈ [−c , c]k , t ∈ [l , u]

}
are equivalent.
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Temporal Process Regression: Consistency

Next, the following lemma yields that processes with square-integrable
total variation are BUEI and PM:

Lemma (22.4)

Let {W (t) : t ∈ [l , u]} be a cadlag stochastic process with
square-integrable total variation W̃ , then {W (t) : t ∈ [l , u]} is BUEI and
PM with envelop 2W̃ .
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Temporal Process Regression: Consistency

Proof. Let W consist of all cadlag functions w : [l , u] 7→ R of bounded
total variation and let W0 be the subset consisting of monotone increasing
functions. Then the functions wj : W 7→ W0, where w1(w) extracts the
monotone increasing part of w and w2(w) extracts the negative of the
monotone decreasing part of w , are both measurable. Moreover, for any
w ∈ W,w = w1(w)− w2(w). Lemma 9.10 tells us that {wj(W )} is VC
with index 2 , for both j = 1, 2. It is not difficult to verify that cadlag
monotone increasing processes are PM (Exercise 22.6.7). Hence we can
apply Part (iv) of Lemma 9.17 to obtain the desired result.

By applying Lemma 9.17, we obtain that G is BUEI and PM with
square-integrable envelope and hence is P-Donsker by Theorem 8.19
and the statements immediately following the theorem.
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Temporal Process Regression: Consistency

The second step is to use this Donsker property to obtain existence and
consistency. Accordingly, we now have for each c <∞ and all
β̃ ∈ {ℓ∞c ([l , u])}k , that

Un(β̃(t), t)

=Pn

{
C (β̃, β0, t)− S(t)R(t)D(β̃(t))V (β̃(t), t)

×
[
h(β̃′(t)X (t))− h

(
β′0(t)X (t)

)]}
=− Pn

[
S(t)R(t)X (t)X ′(t)ḣ

(
β̌′(t)X (t)

)
ḣ(β̃′(t)X (t))V (β̃(t), t)

]
× {β̃(t)− β0(t)}+ ϵn(t)

where β̌(t) is on the line segment between β̃(t) and β0(t) and
ϵn(t) ≡ PnC (β̃, β0, t), t ∈ [l , u].
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Temporal Process Regression: Consistency

Since G is P-Glivenko-Cantelli and PC (β̃, β0, t) = 0 for all t ∈ [l , u] and

β̃ ∈ {ℓ∞c ([l , u])}k , we have supt∈[l ,u] |ϵn(t)|
as*→ 0. By Condition (ii) and

the uniform positive-definiteness assured by Condition (iv), the above
results imply that Un(β̃(t), t) has a uniformly bounded solution β̂n for all n
large enough. Hence ∥Un(β̂n(t), t)∥ ≥ c∥β̂n(t)− β0(t)∥ − ϵ∗n(t), where

c > 0 does not depend on t and ∥ϵ∗n∥∞
as*→ 0. This follows because

{S(t)R(t)X (t)X (t)′ : t ∈ [l , u]} is P-Glivenko-Cantelli using previous
arguments. Thus the desired uniform consistency follows.
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Temporal Process Regression: Asymptotic normality

The following theorem establishes both asymptotic normality and an
asymptotic linearity structure which we will utilize later for inference:

Theorem (22.5)

Under the conditions of Theorem 22.3, β̂n is asymptotically linear with
influence function ψ(t) ≡ −[H(t)]−1A (β0(t), t), where

H(t) ≡ P
[
S(t)R(t)D (β0(t))V (β0(t), t)D

′ (β0(t))
]

and
√
n(β̂n − β0) converges weakly in {ℓ∞([l , u])}k to a tight, mean zero

Gaussian process X (t) with covariance

Σ(s, t) ≡ P
[
X (s)X ′(t)

]
= P

[
ψ(s)ψ′(t)

]
.
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Temporal Process Regression: Asymptotic normality

Proof. By Theorem 22.3, we have for all n large enough,

0 ≡
√
nUn(β̂n(t), t)

=
√
nPnA (β0(t), t) +

√
nPn

[
A(β̂n(t), t)− A (β0(t), t)

]
=
√
nPnA (β0(t), t) +

√
nPn

[
C (β̂n, β0, t)− C (β0, β0, t)

]
−
√
nPn

[
S(t)R(t)D(β̂n(t))V (β̂n(t), t)

×
{
h(β̂′n(t)X (t))− h

(
β′0(t)X (t)

)}]
≡
√
nPnA (β0(t), t) + Jn(t)− Kn(t).
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Temporal Process Regression: Asymptotic normality

Since G is P-Donsker and since sums of Donsker classes are Donsker, and
also since

sup
t∈[l ,u]

P
{
C (β̂n, β0, t)− C (β0, β0, t)

}2 P→ 0,

we have that supt∈[l ,u] |Jn(t)| = oP(1). By previous arguments, we also
have that

Kn(t) = [H(t) + ϵ∗∗n (t)]
√
n(β̂n(t)− β0(t)),

where a simple extension of previous arguments yields that
supt∈[l ,u] |ϵ∗∗n (t)| = oP(1). This now yields the desired asymptotic linearity.
The weak convergence follows since {A (β0(t), t) : t ∈ [l , u]} is a subset of
the Donsker class G.
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Temporal Process Regression: Simultaneous confidence
bands

We now utilize the asymptotic linear structure derived in the previous
theorem to develop simultaneous confidence band inference. Define

Ĥn(t) ≡ Pn

[
S(t)R(t)D(β̂n(t))V (β̂n(t), t)D

′(β̂n(t))
]

and
Σ̂n(s, t) ≡ Ĥ−1

n (s)Pn

[
A(β̂n(s), s)A

′(β̂n(t), t)
]
Ĥ−1
n (t)

and let M̂(t) = [M̂1(t), . . . , M̂k(t)]
′ be the component-wise square root of

the diagonal of Σ̂n(t, t). Define also

I ◦n (t) ≡ n−1/2
n∑

i=1

Gi [diag M̂(t)]−1{Ĥn(t)}−1Ai (β̂n(t), t)

where G1, . . . ,Gn are i.i.d. standard normal deviates independent of the
data.
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Temporal Process Regression: Simultaneous confidence
bands

Now let m◦
n(α) be the 1− α quantile of the conditional sampling

distribution of supt∈[l ,u] ∥I ◦n (t)∥. The next theorem establishes that Σ̂ is
consistent for Σ and that

β̂n(t) ± n−1/2m◦
n(α)M̂(t) (7)

is a 1− α-level simultaneous confidence band for β0(t), simultaneous for
all t ∈ [u, l ].

Theorem (22.6)

Under the conditions of Theorem 22.3, Σ̂(s, t) is uniformly consistent for
Σ(s, t), over all s, t ∈ [l , u], almost surely. If, in addition, inft∈[l ,u] eigmin
Σ(t, t) > 0, then the 1− α confidence band given in (7) is simultaneously
valid asymptotically.
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Temporal Process Regression: Simultaneous confidence
bands

Proof. The proof of uniform consistency of Σ̂ follows from minor
modifications of previous arguments. Provided the minimum eigenvalue
condition holds, M̂(t) will be asymptotically bounded both above and
below uniformly over t ∈ [l , u] and uniformly consistent for the
component-wise square root of the diagonal of Σ(t, t), which we denote
M0(t). The arguments in Section 20.2.3 are applicable, and we can

establish, again by recycling earlier arguments, that I ◦n (t)
P
⇝
G

M−1
0 (t)X (t)

in {ℓ∞([l , u])}k . The desired conclusions now follow.
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