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Continuous Mapping Results

We now assume a more general set-up, where

X̂n is a bootstrapped process in a Banach space (D, ‖ · ‖)
and is composed of the sample data Xn ≡ (X1, . . . ,Xn)

and a random weight vector Mn ∈ Rn independent of Xn.

We do not require that X1, . . . ,Xn be i.i.d.
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Continuous Mapping Results

In this section, we obtain two continuous mapping results.

The first result, Proposition 1 (10.7 in Kosorok’s book), is a simple
continuous mapping results for the very special case of Lipschitz
continuous maps.

It is applicable to both the in-probability or outer-almost sure versions
of bootstrap consistency.

The second result, Theorem 1 (10.8 in Kosorok’s book), is a
considerably deeper result for general continuous maps applied to
bootstraps which are consistent in probability.
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Result for Lipschitz continuous maps

Proposition 1

Let D and E be Banach spaces, X a tight random variable on D, and
g : D 7→ E Lipschitz continuous. We have the following:

1 If X̂n
P
 
M

X , then g(X̂n)
P
 
M

g(X ).

2 If X̂n
as∗
 
M

X , then g(X̂n)
as∗
 
M

g(X ).

Recall that we use the notation X̂n
P
 
M

X to mean that

suph∈BL1

∣∣∣EMh(X̂n)− Eh(X )
∣∣∣ P→ 0 and EMh(X̂n)∗ − EMh(X̂n)∗

P→ 0, for

all h ∈ BL1, where the subscript M in the expectations indicates
conditional expectation over the weights M given the remaining data, and
where h(X̂n)∗ and h(X̂n)∗ denote measurable majorants and minorants
with respect to the joint data (including the weights M).
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Proof of Proposition 1

Proof. Let c0 <∞ be the Lipschitz constant for g , and, without loss of
generality, assume c0 ≥ 1. Note that for any h ∈ BL1(E), the map
x 7→ h(g(x)) is an element of c0BL1(D). Thus

sup
h∈BL1(E)

∣∣∣EMh(g(X̂n))− Eh(g(X ))
∣∣∣ ≤ sup

h∈c0BL1(D)

∣∣∣EMh(X̂n)− Eh(X )
∣∣∣

= c0 sup
h∈BL1(D)

∣∣∣EMh(X̂n)− Eh(X )
∣∣∣

and the desired result follows by the respective definitions of
P
 
M

and
as∗
 
M

.
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Result for general continuous maps

Theorem 1

Let g : D 7→ E be continuous at all points in D0 ⊂ D, where D and E are
Banach spaces and D0 is closed. Assume that Mn 7→ h(X̂n) is measurable

for every h ∈ Cb(D) outer almost surely. Then if X̂n
P
 
M

X in D, where X is

tight and P∗ (X ∈ D0) = 1, g(X̂n)
P
 
M

g(X ).

Proof. As in the proof of the implication (ii) ⇒ (i) of Theorem 10.4 in
Kosorok’s book, we can argue that X̂n  X unconditionally, and thus
g(X̂n) g(X ) unconditionally by the standard continuous mapping
theorem. Moreover, we can replace E with its closed linear span so that
the restriction of g to D0 has an extension g̃ : D 7→ E which is continuous
on all of D by Dugundji’s extension theorem (Theorem 2 below).
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Proof of Theorem 1, continued

Theorem 2 (Dugundji’s extension theorem)

Let X be an arbitrary metric space, A a closed subset of X , L a locally
convex linear space (which includes Banach vector spaces), and f : A 7→ L
a continuous map. Then there exists a continuous extension of
f ,F : X 7→ L. Moreover, F (X ) lies in the closed linear span of the convex
hull of f (A).

Thus (g(X̂n), g̃(X̂n)) (g(X ), g̃(X )), and hence g(X̂n)− g̃(X̂n)
P→ 0.

Therefore we can assume without loss of generality that g is continuous on
all of D. We can also assume without loss of generality that D0 is a
separable Banach space since X is tight. Hence E0 ≡ g (D0) is also a
separable Banach space.
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Proof of Theorem 1, continued

Fix ε > 0. There now exists a compact K ⊂ E0 such that
P(g(X ) /∈ K ) < ε. By Theorem 10.10 in Kosorok’s book, we know there
exists an integer k <∞, elements z1, . . . , zk ∈ C [0, 1], continuous
functions f1, . . . , fk : E 7→ R, and a Lipschitz continuous function

J : lin (z1, . . . , zk) 7→ E, such that the map x 7→ Tε(x) ≡ J
(∑k

j=1 zj fj(x)
)

has domain E and range ⊂ E and satisfies supx∈K ‖Tε(x)− x‖ < ε.
Let BL1 ≡ BL1(E). We now have

sup
h∈BL1

|EMh(g(X̂n))− Eh(g(X )) |

≤ sup
h∈BL1

∣∣∣EMh(Tεg(X̂n))− Eh (Tεg(X ))
∣∣∣

+ EM

{∥∥∥Tεg(X̂n)− g(X̂n)
∥∥∥ ∧ 2

}
+ E {‖Tεg(X )− g(X )‖ ∧ 2}
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Proof of Theorem 1, continued

However, the outer expectation of the second term on the right converges
to the third term, as n→∞, by the usual continuous mapping theorem.
Thus, provided

sup
h∈BL1

∣∣∣EMh(Tεg(X̂n))− E h(Tεg(X ))
∣∣∣ P→ 0 (1)

we have that

lim
n→∞

supE∗
{

sup
h∈BL1

∣∣∣EMh(g(X̂n))− Eh(g(X ))
∣∣∣}

≤ 2E {‖Tεg(X )− g(X )‖ ∧ 2}
≤ 2E ‖{Tεg(X )− g(X )} 1{g(X ) ∈ K}‖+ 4P(g(X ) /∈ K )

< 6ε

(2)
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Proof of Theorem 1, continued

Now note that for each h ∈ BL1, h(J(
∑k

j=1 zjaj)) = h̃ (a1, . . . , ak) for all

(a1, . . . , ak) ∈ Rk and some h̃ ∈ c0BL1

(
Rk
)
, where 1 ≤ c0 <∞ (this

follows since J is Lipschitz continuous and
‖
∑k

j=1 zjaj‖ ≤ max1≤j≤k |aj | ×
∑k

j=1 ‖zj‖). Hence

sup
h∈BL1

∣∣∣EMh(Tεg(X̂n))− Eh(Tεg(X ))
∣∣∣

≤ sup
h∈c0BL1(Rk )

∣∣∣EMh(u(X̂n))− Eh(u(X ))
∣∣∣

= c0 sup
h∈BL1(Rk )

∣∣∣EMh(u(X̂n))− Eh(u(X ))
∣∣∣

(3)

where x 7→ u(x) ≡ (f1(g(x)), . . . , fk(g(x))).
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Proof of Theorem 1, continued

Fix any v : Rk 7→ [0, 1] which is Lipschitz continuous (the Lipschitz
constant may be > 1). Then, since X̂n  X unconditionally,

E∗
{
EMv(u(X̂n))∗ − EMv(u(X̂n))∗

}
≤ E∗

{
v(u(X̂n))∗ − v(u(X̂n))∗

}
→ 0,

where sub- and super-script ∗ denote measurable majorants and minorants,
respectively, with respect to the joint probability space of (Xn,Mn). Thus,∣∣∣EMv(u(X̂n))− EMv(u(X̂n))∗

∣∣∣ P→ 0. (4)

Note that we are using at this point the outer almost sure measurability of
Mn 7→ v(u(X̂n)) to ensure that EMv(u(X̂n)) is well defined, even if the
resulting random expectation is not itself measurable.
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Proof of Theorem 1, continued

Now, for every subsequence n′, there exists a further subsequence n′′ such
that X̂n′′

as∗
 
M

X . This means that for this subsequence, the set B of data

subsequences {Xn′′ : n ≥ 1} for which EMv(u(X̂n′′))− Ev(u(X ))→ 0 has
inner probability 1. Combining this with (4) and Proposition 7.22 in

Kosorok’s book, we obtain that EMv(u(X̂n))− Ev(u(X ))
P→ 0. Since v

was an arbitrary real, Lipschitz continuous function on Rk , we now have
by Part (i) of Lemma 3 below followed by Lemma 4 below, that

sup
h∈BL1(Rk )

∣∣∣EMh(u(X̂n))− Eh(u(X ))
∣∣∣ P→ 0

Combining this with (3), we obtain that (1) is satisfied. The desired result
now follows from (2), since ε > 0 was arbitrary.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)More Results on Bootstrapping Empirical Processes 08/26/2021 13 / 33



Proof of Theorem 1, continued

Lemma 3

Let Xn and X be random variables in Rk for all n ≥ 1. Define
S ⊂ [R ∪ {−∞,∞}]k to be the set of all continuity points of t 7→
F (t) ≡ P(X ≤ t) and H to be the set of all Lipschitz continuous functions
h : Rk 7→ [0, 1] (the Lipschitz constants may be > 1) . Then, provided the
expectations are well defined, we have:

1 If E [h (Xn) | Yn]
P→ Eh(X ) for all h ∈ H, then

supt∈A | P (Xn ≤ t | Yn)− F (t) | P→ 0 for all closed A ⊂ S;

2 If E [h (Xn) | Yn]
as∗→ Eh(X ) for all h ∈ H, then

supt∈A | P (Xn ≤ t | Yn)− F (t) |as∗→ 0 for all closed A ⊂ S.
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Proof of Theorem 1, continued

Lemma 4

Let {Fn} and F be distribution functions on Rk , and let
S ⊂ [R ∪ {−∞,∞}]k be the set of all continuity points of F . Then the
following are equivalent:

1 supt∈A |Fn(t)− F (t)| → 0 for all closed A ⊂ S.
2 suph∈BL1(Rk)

∣∣∫
Rk h (dFn − dF )

∣∣→ 0.
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The Bootstrap for Glivenko-Cantelli Classes

We now present several results for the bootstrap applied to
Glivenko-Cantelli classes. The primary use of these results is to assist
verification of consistency of bootstrapped estimators.

The first theorem (Theorem 5) consists of various multiplier
bootstrap results, and it is followed by a corollary (Corollary 6) which
applies to certain weighted bootstrap results.

The final theorem of this section (Theorem 10.15) gives
corresponding results for the multinomial bootstrap.
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The Bootstrap for Glivenko-Cantelli Classes

Theorem 5

Let F be a class of measurable functions, and let ξ1, . . ., ξn be i.i.d.
nonconstant random variables with 0 < E|ξ| <∞ and independent of the
sample data X1, . . . ,Xn. Let Wn ≡ n−1

∑n
i=1 ξi (δXi

− P) and
W̃n ≡ n−1

∑n
i=1

(
ξi − ξ̄

)
δXi

, where ξ̄ ≡ n−1
∑n

i=1 ξi . Then the following
are equivalent:

(i) F is strong Glivenko-Cantelli;

(ii) ‖Wn‖F
as*→ 0;

(iii) Eξ ‖Wn‖F
as*→ 0 and P∗‖f − Pf ‖F <∞;

(iv) For every η > 0,P (‖Wn‖F > η | Xn)
as∗→ 0 and P∗‖f − Pf ‖F <∞

where Xn ≡ (X1, . . . ,Xn);

(v) For every η > 0,P (‖Wn‖∗F > η | Xn)
as∗→ 0 and P∗‖f − Pf ‖F <∞,

for some version of ‖Wn‖∗F , where the superscript ∗ denotes a
measurable majorant with respect to (ξ1, . . . , ξn,X1, . . . ,Xn) jointly;
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The Bootstrap for Glivenko-Cantelli Classes

Theorem 5

(vi) ‖W̃n‖F
as*→ 0;

(vii) Eξ‖W̃n‖F
as∗→ 0 and P∗‖f − Pf ‖F <∞;

(viii) For every η > 0,P(‖W̃n‖F > η | Xn)
as*→ 0 and P∗‖f − Pf ‖F <∞;

(ix) For every η > 0,P(‖W̃n‖∗F > η | Xn)
as*→ 0 and P∗‖f − Pf ‖F <∞

for some version of ‖W̃n‖∗F .

The distinctions between (iv) and (v) and between (viii) and (ix) are not
as trivial as they appear. This is because the measurable majorants
involved are computed with respect to (ξ1, . . . , ξn,X1, . . . ,X1) jointly, and
thus the differences between ‖Wn‖F and ‖Wn‖∗F or between ‖W̃n‖F and
‖W̃n‖F may be nontrivial.
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Results for certain weighted bootstrap

Corollary 6

Let F be a class of measurable functions, and let ξ1, . . . , ξn be i.i.d.
nonconstant, nonnegative random variables with 0 < Eξ <∞ and
independent of X1, . . . ,Xn. Let P̃n ≡ n−1

∑n
i=1

(
ξi/ξ̄

)
δXi

where we set

P̃n = 0 when ξ̄ = 0. Then the following are equivalent:

(i) F is strong Glivenko-Cantelli;

(ii) ‖P̃n − Pn‖F
as∗→ 0 and P∗‖f − Pf ‖F <∞;

(iii) Eξ‖P̃n − Pn‖F
as*→ 0 and P∗‖f − Pf ‖F <∞;

(iv) For every η > 0,P(‖P̃n − Pn‖F > η | Xn)
as∗→ 0 and

P∗‖f − Pf ‖F <∞;

(v) For every η > 0,P(‖P̃n − Pn‖∗F > η | Xn)
as*→ 0 and

P∗‖f − Pf ‖F <∞, for some version of ‖P̃n − Pn‖∗F ;

If in addition P(ξ = 0) = 0, then the requirement that P∗‖f − Pf ‖F <∞
in (ii) may be dropped.
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Proof of Corollary 6

Proof. Since the processes Pn − P and P̃n − Pn do not change when the
class F is replaced with Ḟ ≡ {f − Pf : f ∈ F}, we can assume ‖P‖F = 0
without loss of generality. Let the envelope of Ḟ be denoted Ḟ ≡ ‖f ‖∗Ḟ .

Since multiplying the ξi by a constant does not change ξi/ξ̄, we can also
assume Eξ = 1 without loss of generality. The fact that the conditional
expressions in (iii) and (iv) are well defined can be argued is in the proof of
Theorem 5, and we do not repeat the details here.
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Proof of Corollary 6, continued

(i)⇒(ii): Since

P̃n − Pn − W̃n =

(
1

ξ̄
− 1

)
1{ξ̄ > 0}W̃n − 1{ξ̄ = 0}Pn, (5)

(ii) follows by Theorem 5 and the fact that ξ̄
as*→ 1.

(ii)⇒(i): Note that

P̃n − Pn − W̃n = −(ξ̄ − 1)1{ξ̄ > 0}(P̃n − Pn)− 1{ξ̄ = 0}Pn, (6)

The first term on the right
as*→ 0 by (ii), while the second term on the

right is bounded in absolute value by
1{ξ̄ = 0} ‖Pn‖Ḟ ≤ 1{ξ̄ = 0}PnḞ

as∗→ 0, by the moment condition.
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Proof of Corollary 6, continued

(ii)⇒(iii): The method of proof will be to use the expansion (5) to show

that Eξ‖P̃n − Pn − W̃n‖F
as*→ 0. Then (iii) will follow by Theorem 5 and

the established equivalence between (ii) and (i). Along this vein, we have
by symmetry followed by an application of Theorem 9.29 in Kosorok’s
book that

Eξ

{∣∣∣∣1ξ − 1

∣∣∣∣ 1{ξ̄ > 0}‖W̃n‖Ḟ

}
≤ 1

n

n∑
i=1

Ḟ (Xi )Eξ

{
ξi

∣∣∣∣1ξ − 1

∣∣∣∣ 1{ξ̄ > 0}
]

= PnḞEξ{|1− ξ̄|1{ξ̄ > 0}}
as*→ 0

Since also Eξ[1{ξ̄ = 0}] ‖Pn‖Ḟ
as*→ 0, the desired conclusion follows.

(iii)⇒(iv): This is obvious.
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Proof of Corollary 6, continued

(iv)⇒(i): Consider again expansion (6). The moment conditions easily give

us, conditional on X1,X2, . . ., that 1{ξ̄ = 0} ‖Pn‖Ḟ ≤ 1{ξ̄ = 0}PnḞ
P→ 0

for almost all sequences X1,X2, . . . By (iv), we also obtain that

|ξ̄ − 1|1{ξ̄ > 0}‖P̃n − Pn‖F
P→ 0 for almost all sequences X1,X2, . . .. Thus

Assertion (viii) of Theorem 5 follows, and we obtain (i).
If P(ξ = 0) = 0, then 1{ξ̄ = 0}Pn = 0 almost surely, and we no longer
need the moment condition PḞ <∞ in the proofs of (ii) ⇒ (i) and (ii)
⇒(iii), and thus the moment condition in (ii) can be dropped in this
setting.
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Proof of Corollary 6, continued

(ii)⇒(v): Assertion (ii) implies that there exists a measurable set B of
infinite sequences (ξ1,X1) , (ξ2,X2) , . . . with P(B) = 1 such that
‖P̃n − Pn‖∗F → 0 on B for some version of ‖P̃n − Pn‖∗F . Let Eξ,∞ be the
expectation taken over the infinite sequence ξ1, ξ2, . . . holding the infinite
sequence X1,X2, . . . fixed. By the bounded convergence theorem, we have
for any η > 0 and almost all sequences X1,X2, . . .

lim sup
n→∞

P(‖P̃n − Pn‖∗F > η | Xn) = lim sup
n→∞

Eξ,∞1
{
‖P̃n − Pn‖∗F > η

}
1{B}

= Eξ,∞ lim sup
n→∞

1
{
‖P̃n − Pn‖∗F > η

}
1{B}

= 0.

Thus (v) follows.
(v)⇒(iv): This is obvious.
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Results for the multinomial bootstrap

Theorem 7

Let F be a class of measurable functions, and let the multinomial vectors
Wn in P̂n be independent of the data. Then the following are equivalent:

(i) F is strong Glivenko-Cantelli;

(ii) ‖P̂n − Pn‖F
as∗→ 0 and P∗‖f − Pf ‖F <∞;

(iii) EW ‖P̂n − Pn‖F
as*→ 0 and P∗‖f − Pf ‖F <∞;

(iv) For every η > 0,P(‖P̂n − Pn‖F > η | Xn)
as∗→ 0 and

P∗‖f − Pf ‖F <∞;

(v) For every η > 0,P(‖P̂n − Pn‖∗F > η | Xn)
as*→ 0 and

P∗‖f − Pf ‖F <∞, for some version of ‖P̂n − Pn‖∗F ;
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A Simple Z-Estimator Master Theorem

Consider Z-estimation based on the estimating equation

θ 7→ Ψn(θ) ≡ Pnψθ

where θ ∈ Θ ⊂ Rp and x 7→ ψθ(x) is a measurable p-vector valued
function for each θ. Define the map

θ 7→ Ψ(θ) ≡ Pψθ,

and assume θ0 ∈ Θ satisfies Ψ (θ0) = 0.
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A Simple Z-Estimator Master Theorem

Let θ̂n be an approximate zero of Ψn, and let θ̂◦n be an approximate zero of
the bootstrapped estimating equation

θ 7→ Ψ◦n(θ) ≡ P◦nψθ

where P◦n is either

P̃n of Corollary 6, with ξ1, . . . , ξn satisfying the conditions specified in
the first paragraph of Section 10.1.3 (the multiplier bootstrap),

or P̂n of Theorem 7 (the multinomial bootstrap).
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A Simple Z-Estimator Master Theorem

The goal is to determine reasonably general conditions under which

√
n(θ̂n − θ0) Z

where Z is mean zero normally distributed, and

√
n(θ̂◦n − θ̂n)

P
 
◦
k0Z

Here, we use
P
 
◦

to denote either
P
 
P

or
P
 
M

depending on which bootstrap is

being used, and

k0 = τ/µ for the multiplier bootstrap,

while k0 = 1 for the multinomial bootstrap.
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A Simple Z-Estimator Master Theorem

Theorem 8

Let Θ ⊂ Rp be open, and assume θ0 ∈ Θ satisfies Ψ (θ0) = 0. Also assume
the following:

(A) For any sequence {θn} ∈ Θ,Ψ (θn)→ 0 implies ‖θn − θ0‖ → 0;

(B) The class {ψθ : θ ∈ Θ} is strong Glivenko-Cantelli;

(C) For some η > 0, the class F ≡ {ψθ : θ ∈ Θ, ‖θ − θ0‖ ≤ η} is Donsker
and P ‖ψθ − ψθ0‖

2 → 0 as ‖θ − θ0‖ → 0

(D) P ‖ψθ0‖
2 <∞ and Ψ(θ) is differentiable at θ0 with nonsingular

derivative matrix Vθ0 ;

(E) Ψn(θ̂n) = oP
(
n−1/2

)
and Ψ◦n(θ̂◦n) = oP

(
n−1/2

)
.

Then
√
n(θ̂n − θ0) Z ∼ N(0,V−1

θ0
P
[
ψθ0ψ

T
θ0

] (
V−1
θ0

)T
)

and
√
n(θ̂◦n − θ̂n)

P
 
◦
k0Z .
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A Simple Z-Estimator Master Theorem

Condition (A) is one of several possible identifiability conditions.

Condition (B) is a sufficient condition, when combined with (A), to
yield consistency of a zero of Ψn.

Condition (C) is needed for asymptotic normality of
√
n(θ̂n − θ0) and

is also not hard to verify in practice.

Condition (D) enables application of the delta method at the
appropriate juncture in the proof.

Condition (E) is a specification of the level of approximation
permitted in obtaining the zeros of the estimating equations.
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Proof of Theorem 8

By (B) and (E),

‖Ψ(θ̂n)‖ ≤ ‖Ψn(θ̂n)‖+ sup
θ∈Θ
‖Ψn(θ)−Ψ(θ)‖ ≤ oP(1)

Thus θ̂n
P→ θ0 by the identifiability Condition (A). By Assertion (ii) of

either Corollary 6 or Theorem 7 (depending on which bootstrap is used),

Condition (B) implies supθ∈Θ ‖Ψ◦n(θ)−Ψ(θ)‖ as*→ 0. Thus reapplication

of Conditions (A) and (E) yield θ̂◦n
P→ θ0.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)More Results on Bootstrapping Empirical Processes 08/26/2021 31 / 33



Proof of Theorem 8, continued

By (C) and the consistency of θ̂n, we have Gnψθ̂n −Gnψθ0

P→ 0. Since (E)

now implies that Gnψθ̂n =
√
nP(ψθ0 − ψθ̂n) + oP(1), we can use the

parametric (Euclidean) delta method plus differentiability of Ψ to obtain

√
nVθ0(θ0 − θ̂n) +

√
noP(‖θ̂n − θ0‖) = Gnψθ0 + oP(1). (7)

Since Vθ0 is nonsingular, this yields that√
n‖θ̂n − θ0‖ (1 + oP(1)) = OP(1), and thus

√
n(θ̂n − θ0) = OP(1).

Combining this with (7), we obtain

√
n(θ̂n − θ0) = −V−1

θ0

√
nPnψθ0 + oP(1) (8)

and thus
√
n(θ̂n − θ0) Z with the specified covariance.
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Proof of Theorem 8, continued

The first part of Condition (C) and Theorem 2.6 imply that
G◦n ≡ k−1

0

√
n (P◦n − Pn) G in `∞(F) unconditionally, by arguments

similar to those used in the (ii) ⇒ (i) part of the proof of Theorem 10.4.
Combining this with the second part of Condition (C), we obtain

k0G◦n(ψθ̂◦n
) + Gn(ψθ̂◦n

)− k0G◦n (ψθ0)−Gn (ψθ0)
P→ 0. Condition (E) now

implies
√
nP(ψθ0 − ψθ̂◦n ) =

√
nP◦nψθ0 + oP(1). Using similar arguments to

those used in the previous proof, we obtain

√
n(θ̂◦n − θ0) = −V−1

θ0

√
nP◦nψθ0 + oP(1) (9)

Combining with (8), we have

√
n(θ̂◦n − θ̂n) = −V−1

θ

√
n(P◦n − Pn)ψθ0 + oP(1) (10)

The desired conditional bootstrap convergence now follows from Theorem
2.6, Part (ii) or Part (iii) (depending on which bootstrap is used).
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